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Abstract. As three-dimensional (3-D) aquatic ecosystem

models are used more frequently for operational water qual-

ity forecasts and ecological management decisions, it is im-

portant to understand the relative strengths and limitations

of existing 3-D models of varying spatial resolution and bio-

geochemical complexity. To this end, 2-year simulations of

the Chesapeake Bay from eight hydrodynamic-oxygen mod-

els have been statistically compared to each other and to his-

torical monitoring data. Results show that although models

have difficulty resolving the variables typically thought to be

the main drivers of dissolved oxygen variability (stratifica-

tion, nutrients, and chlorophyll), all eight models have sig-

nificant skill in reproducing the mean and seasonal variabil-

ity of dissolved oxygen. In addition, models with constant net

respiration rates independent of nutrient supply and temper-

ature reproduced observed dissolved oxygen concentrations

about as well as much more complex, nutrient-dependent

biogeochemical models. This finding has significant ramifi-

cations for short-term hypoxia forecasts in the Chesapeake

Bay, which may be possible with very simple oxygen pa-

rameterizations, in contrast to the more complex full bio-

geochemical models required for scenario-based forecasting.

However, models have difficulty simulating correct density

and oxygen mixed layer depths, which are important ecolog-

ically in terms of habitat compression. Observations indicate

a much stronger correlation between the depths of the top

of the pycnocline and oxycline than between their maximum

vertical gradients, highlighting the importance of the mixing

depth in defining the region of aerobic habitat in the Chesa-

peake Bay when low-oxygen bottom waters are present. Im-

provement in hypoxia simulations will thus depend more on

the ability of models to reproduce the correct mean and vari-

ability of the depth of the physically driven surface mixed

layer than the precise magnitude of the vertical density gra-

dient.
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1 Introduction

Since the middle of the last century, anthropogenic impacts

have dramatically decreased water quality throughout the

Chesapeake Bay (Boesch et al., 2001), one of the largest es-

tuaries in North America. Land-use change along with the in-

dustrialization and urbanization of the Chesapeake Bay wa-

tershed have caused dramatic increases in nutrient inputs to

the bay (Kemp et al., 2005), spurring additional primary pro-

duction and phytoplankton abundance (Harding Jr. and Perry,

1997). Because increased primary production leads to more

organic matter throughout the water column that is eventu-

ally decomposed by bacteria, these increased nutrient inputs

to the bay have led to a corresponding decrease in dissolved

oxygen (DO) concentrations (Hagy et al., 2004). Hypoxia,

generally defined as the condition in which DO concentra-

tions are below 2 mgL−1, usually initiates seasonally in the

northern portion of the bay and expands southward as sum-

mer develops (Kemp et al., 2009; Testa and Kemp, 2014).

Although hypoxia in the Chesapeake Bay has likely ex-

isted since European colonization (Cooper and Brush, 1991,

1993), recent studies have highlighted an accelerated rise in

the number and spatial extent of hypoxic, as well as anoxic

(DO concentrations < 0.2 mgL−1), events in the bay since

the 1950s, primarily attributed to increased anthropogenic

nutrient input (Hagy et al., 2004; Kemp et al., 2005; Gilbert

et al., 2010). These impacts are likely to be exacerbated by

future climate change (Najjar et al., 2010; Meire et al., 2013;

Harding Jr. et al., 2015).

Interest in the ecological impacts of reduced DO con-

centrations has been elevated due to the observed prolifer-

ation of hypoxic events in the world’s coastal oceans, cre-

ating vast dead zone areas that compress suitable habitats

for many marine species (Diaz, 2001; Diaz and Rosenberg,

2008; Pierson et al., 2009). Low-DO waters can greatly

impact the abundance and health of important ecological

species, potentially resulting in suffocation and major kills of

fish, crabs, and shellfish (Breitburg, 2002; Ekau et al., 2010;

Levin et al., 2009). While the presence of DO concentra-

tions < 2 mgL−1 have been shown to decrease the abun-

dance of fish larvae (Keister et al., 2000), some species can

incur negative health impacts and modify their behavior at

significantly higher DO concentrations (Vaquer-Sunyer and

Duarte, 2008). DO concentrations of ∼ 4 mgL−1 have been

found to compress demersal fish habitat as fish seek out more

oxygenated waters (Buchheister et al., 2013). Zooplankton,

a crucial food source for valuable species, have also been

found to exhibit changes in distribution and predation when

subject to large volumes of low-DO water, potentially lead-

ing to further impacts along the food chain (Breitburg et

al., 1997; Pierson et al., 2009). Invertebrates have similarly

been found to alter their behavior under low-DO condi-

tions (Riedel et al., 2014). In the Chesapeake Bay, multi-

ple regulated fish species, such as striped bass and American

shad, require oxygen restoration targets as high as 5 mgL−1

Figure 1. Map of the Chesapeake Bay and its watershed.

(USEPA, 2010). The greatest impact of low DO concentra-

tions spatially will depend on the specific living resource;

however, temporally, late spring to early fall is of most con-

cern. As a result of the significant ecological importance of

oxygen on living resources in the bay, DO concentrations

are used as a primary indicator in assessing water quality for

Chesapeake Bay regulations (Keisman and Shenk, 2013).

Improving the health of the Chesapeake Bay has become

a priority for the Environmental Protection Agency (EPA)

along with the six states and Washington, DC that make up

the bay watershed (Fig. 1), and together they have commit-

ted to utilizing a suite of regulatory models to inform their

management decisions (USEPA, 2010). The Chesapeake Bay

Program (CBP), a regional partnership that has led and di-

rected the restoration of the Chesapeake Bay since 1983, has

undertaken an extensive modeling effort of the bay (Cerco

and Cole, 1993; Cerco et al., 2002; Cerco and Noel, 2004,

2013). This modeling system is being used by the CBP

to estimate the aggregate effect of changes in management

practices, including land use, atmospheric deposition, animal

populations, and fertilizer and manure application. Recently,

the modeling system has been used to conduct scenario sim-

ulations to assess management actions needed to achieve de-

sired bay water quality standards (USEPA, 2010). Ultimately

this model was used to establish a regulatory set of total max-

imum daily loads of nutrients and sediment delivered from

the watershed, with the goal of significantly improving water

quality throughout the bay (USEPA, 2010).
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Many 3-D hydrodynamic-oxygen models of varying com-

plexity stemming from the academic research community

have also been used to simulate DO concentrations through-

out the Chesapeake Bay (Scully, 2010, 2013; Hong and Shen,

2013; Feng et al., 2015; Testa et al., 2014; Y. Li et al., 2015).

Bever et al. (2013) specifically demonstrated that multiple

models of varying complexity are able to generate skillful es-

timates of hypoxic volume in the bay. Some of these models

are being used in the bay to simulate short-term and/or sea-

sonal forecasts of DO conditions. Furthermore, some models

are also being used to generate scenario forecasts, or projec-

tions, that assess the impact of changes in management prac-

tices on estuarine DO concentrations, in some cases taking

into account the impacts of future changes in climate.

As ecosystem and water quality models are increasingly

used for operational forecasts as well as scenario-based

management decisions by the regulatory and academic re-

search communities, it is important to understand the rela-

tive strengths and limitations of existing models of varying

complexity. The ability to discern which variables must be

most accurately simulated in order to adequately reproduce

the temporal and spatial variability of bay oxygen concentra-

tions is a necessary prerequisite for fully understanding how

volumes of low-DO water are initiated and sustained within

water quality models. The utilization of multiple models can

also inform projections by providing independent confidence

bounds for management decisions. To those ends, the over-

arching goals of this research are to compare the relative

skill of various 3-D Chesapeake Bay models characterized

by different levels of biogeochemical complexity and spatial

resolution, to better understand factors limiting their ability

to reproduce observed DO distributions, and to suggest ap-

proaches for the continued improvement of these models.

2 Methods

2.1 Participating Chesapeake Bay models

Eight 3-D models were evaluated in this study (Table 1),

each of which includes hydrodynamic and DO components.

Among the eight models, there are four different hydrody-

namic base models. Models B, C, D, F, and G utilize the

Regional Ocean Modeling System (ROMS; Shchepetkin and

McWilliams, 2005; Haidvogel et al., 2008) that employs a

structured grid with sigma layers in the vertical dimension.

Specifically, Models B, C, and F use a ROMS implemen-

tation developed for the Chesapeake Bay based on Xu et

al. (2012; ChesROMS). Model D employs a ROMS im-

plementation for the Chesapeake Bay based on M. Li et

al. (2005), while Model G uses the ROMS-based Chesapeake

Bay Operational Forecast System (CBOFS; Lanerolle et

al., 2011). Models A, E, and H each use a different hydrody-

namic base model: the Curvilinear Hydrodynamics in Three

Dimensions model (CH3D; Cerco et al., 2010), the Finite-

Volume Community Ocean Model (FVCOM; Jiang and Xia,

2016), and the Hydrodynamic Eutrophication Model – Envi-

ronmental Fluid Dynamics Code (EFDC; Park et al., 1995;

Hong and Shen, 2012; Du and Shen, 2015), respectively.

The only model that employs a non-sigma vertical grid is

Model A and the only model utilizing an unstructured hor-

izontal grid is Model E. While Model E contains 10 sigma

vertical layers, all of the other sigma grids use 20 layers. All

of the grids vary in terms of their horizontal resolution, with

Models A and G utilizing the highest resolution horizontal

grids.

These four hydrodynamic models are coupled to five dif-

ferent models used to simulate DO (Table 1). Models A, B,

C, D, and E utilize full biogeochemical models that include

various combinations of oxygen, phytoplankton, zooplank-

ton, and multiple inorganic and organic nutrients as state

variables. Specifically, Models A and E employ a version of

the Integrated Compartment Model (ICM; Cerco et al., 2010;

Jiang et al., 2015), Model B uses the Estuarine Carbon Bio-

geochemistry model (ECB; Feng et al., 2015), Model C uses

the Biogeochemistry model (BGC; Brown et al., 2013), and

Model D uses the Row–Column AESOP model (RCA; Testa

et al., 2014). In terms of food web complexity the models

vary considerably: Models B and C employ a single phyto-

plankton group whereas Model D uses two phytoplankton

groups, Model E uses three, and Model A, the most complex

of the participating models, uses five.

In contrast to the full biogeochemical models discussed

above (Models A through E), Models F, G, and H represent

oxygen dynamics as simply as possible and therefore do not

utilize a full biogeochemical component. Rather, the models

impose a biological oxygen consumption rate that is model-

specific, but constant in both space and time. This compo-

nent is referred to as a constant-respiration model (CRM).

In this model, DO is introduced to the estuary via the river

and ocean boundaries and is set to saturation at the estuar-

ine surface. This constant-respiration oxygen parameteriza-

tion (Scully, 2010) is simplistic, yet has been shown to ade-

quately represent Chesapeake Bay oxygen dynamics (Scully,

2010, 2013; Bever et al., 2013).

The major difference in forcing between the eight model

implementations is that Models A and B use riverine in-

put derived from watershed models, whereas Models C–

H used the measured flow from United States Geological

Survey gauging stations, extrapolated using various tech-

niques. Model A utilized the CBP’s regulatory watershed

model (Shenk and Linker, 2013), while Model B utilized

the Dynamic Land Ecosystem Model (Yang et al., 2015a, b;

Tian et al., 2015). At the open boundary with the Atlantic

Ocean, Models B, C, D, F, G, and H utilize a sub-tidal ele-

vation extrapolated from tidal stations on either side of the

open boundary. Model E uses the TPXO tidal model, while

Model A uses a mix of observational and model forcing

(Cerco et al., 2010). While Model B utilizes wind forcing

based on observations from the Thomas Point Light, Mod-
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els C through H use wind estimates from the North American

Regional Reanalysis (NARR).

The eight models used in this analysis have been devel-

oped for a variety of purposes. Model A is a governmental

regulatory model developed by the CBP that has been exten-

sively calibrated specifically to examine water quality issues

in the Chesapeake Bay (Cerco and Cole, 1993; Cerco and

Noel, 2004, 2013; Cerco et al., 2010) and has been used in the

development of the 2010 Chesapeake Bay Total Maximum

Daily Load (USEPA, 2010). The National Oceanic and At-

mospheric Administration employs the hydrodynamic com-

ponent of Model F for operational forecasts of a variety of

physical estuarine parameters for the Chesapeake Bay (http:

//www.tidesandcurrents.noaa.gov/ofs/cbofs/cbofs.html). The

other six models are academic models used in diverse re-

search efforts focused on the Chesapeake Bay but not nec-

essarily specifically on DO dynamics.

Finally, a ninth model is calculated as the mean of the re-

sults from the eight models described above, and is referred

to here as Model Mean, or Model M.

2.2 Available Chesapeake Bay observations

Model simulations were compared to cruise data from the

CBP for 2004 and 2005 from 13 stations along the main

stem of the bay (Table 2, Fig. 2). The years 2004 and

2005 were selected to represent relatively wet and av-

erage years, respectively, and the 13 stations were cho-

sen as they have been found to offer optimal estimates

of bay-wide hypoxic volume (Bever et al., 2013). Sta-

tions were sampled on up to 34 cruises over the 2 years

(Table 2), generally twice a month from April to Au-

gust and once a month for the remainder of the year. Ob-

servational data can be downloaded from the CBP Wa-

ter Quality Database (http://www.chesapeakebay.net/data/

downloads/cbpwaterqualitydatabase1984present). Variables

downloaded from the CBP website and used in this study

were temperature, salinity, DO, nitrate + nitrite (hereafter

abbreviated as “nitrate”), and chlorophyll a (hereafter abbre-

viated as “chlorophyll”). For most cruises, observations of

temperature, salinity, and DO were made at roughly 1 m in-

tervals throughout the water column, whereas observations

of chlorophyll and nitrate were generally made only at the

surface, bottom, and sometimes one or two mid-water col-

umn locations. For further information on available water

quality observations, please see USEPA (2012). While these

observations were publicly available for model assessment

during calibration of all of the models, they represent a very

small subset of the 30 years of EPA observations across over

100 bay stations. The models compared here were calibrated

based on access to the larger data set and for conditions in

the bay in general, not specifically for the 13 stations and 2

years considered here.
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Table 2. Characteristics of observation stations (from USEPA,

2012).

Station Latitude Longitude Station depth No. of cruises

(◦ N) (◦W) (m)

CB3.2 39.1634 76.3063 12.1 34

CB3.3C 38.9951 76.3597 24.3 34

CB4.1C 38.8251 76.3997 32.3 34

CB4.2C 38.6448 76.4177 27.2 34

CB4.3C 38.5565 76.4347 26.9 34

CB4.4 38.4132 76.3430 30.3 34

CB5.1 38.3185 76.2930 34.1 34

CB5.2 38.13678 76.2280 30.6 34

CB5.4 37.8001 76.1747 31.1 26

CB6.2 37.4868 76.1563 10.5 30

CB6.4 37.2365 76.2080 10.2 29

CB7.1 37.6835 75.9897 20.9 27

LE2.3 38.0215 76.3477 20.1 34

Figure 2. Location of the CBP water quality monitoring stations

used in this study.

2.3 Calculation of stratification and mixed layer depth

Stratification of the density and oxygen fields was examined

to identify the maximum gradient of the pycnocline and oxy-

cline as well as the depth of the top of the pycnocline and

oxycline. In open ocean studies, the depth of the top of strat-

ification is commonly referred to as the mixed layer depth

(MLD), although this term is less frequently used in the estu-

arine literature. As the research presented here distinguishes

between the depths of the top of the pycnocline and that of

the oxycline, these will be referred to respectively as the den-

sity (ρ) mixed layer depth (MLDρ) and the oxygen mixed

layer depth (MLDO). Density was calculated via a classical

density formula that is also utilized by the CBP for use in

the Chesapeake Bay (Fofonoff and Millard, 1983; USEPA,

2004) and is a function of temperature and salinity.

The CBP defines the top and bottom of stratification in

order to distinguish individual designated use areas for wa-

ter quality management purposes (USEPA, 2004). They sug-

gest that the top of the pycnocline be defined as the shallow-

est occurrence of a density gradient of 0.1 kgm−4 or greater

as resolved by CBP profile observations, which are typi-

cally spaced at 0.5–2 m depth intervals. If density gradients

throughout the water column are less than 0.1 kgm−4, they

define the water to be unstratified. The 0.1 kgm−4 threshold

definition is designed to identify any initiation of stratifica-

tion that may serve to cut off vertical mixing from a nearly

perfectly well-mixed layer.

While the CBP definition described above delineates be-

tween designated use boundaries according to density, our

research focuses on the relationship between the pycnocline

and oxycline, requiring an alternate definition that can be

applied to both the density and oxygen distributions. In ad-

dition, the CBP definition often generates estimates for the

depth of the top of the pycnocline that are too shallow com-

pared to the maximum depth of surface mixing (Fig. 3).

As a result, a percentage threshold criterion was developed

that identifies the bottom of the reasonably well-mixed layer,

rather than perfectly mixed layer, and is used in this analy-

sis. The percentage threshold method defines a density or DO

profile as being stratified if a change of 10 % of the difference

between the profile’s maximum and minimum values occurs

within a single meter (Fig. 3). For example, if the maximum

DO concentration throughout the water column on an indi-

vidual sampling date is 10 mgL−1 and the minimum con-

centration is 1 mgL−1, stratification is defined to be present

if a difference of 0.9 mgL−1 is present within 1 m. As rec-

ommended by the CBP, the uppermost meter of the water

column is not considered (USEPA, 2004). The mixed layer

depth is therefore defined as the shallowest level (below 1 m

depth) where stratification is identified. The minimum strati-

fication criterion utilized in this analysis requiring a profile to

pass the 10 % threshold also ensures that observations where

very little stratification exists do not bias the stratification

results while also allowing for a single criterion to be used

across multiple stratification variables.

2.4 Model skill metrics

Simulations of the Chesapeake Bay from the eight mod-

els described above were statistically compared to histori-

cal monitoring data using a variety of skill metrics includ-

ing root-mean squared difference (RMSD), bias, standard

www.biogeosciences.net/13/2011/2016/ Biogeosciences, 13, 2011–2028, 2016
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Figure 3. Density and dissolved oxygen profiles for a mid-bay station (CB4.1C) on (a) 13 January 2004 and (b) 14 June 2005, comparing

the 0.1 kgm−4 stratification definition used by the CBP (MLDCBP) with the 10 % threshold definitions used here for density (MLDρ ) and

oxygen (MLDO).

deviation, and correlation coefficient. These metrics are il-

lustrated on Taylor and target diagrams (Taylor, 2001; Hof-

mann et al., 2008; Jolliff et al., 2009), which offer a com-

pact way of assessing model skill by displaying a number

of different skill metrics. Target diagrams illustrate the bias

and total RMSD of model output, which Taylor diagrams

do not. Taylor diagrams include quantitative information on

the standard deviations and correlations between the model

output and the observations, which target diagrams do not.

Both diagrams, however, represent unbiased RMSD, some-

times called “centered-pattern RMSD”. On target diagrams,

a model symbol above the horizontal axis overestimates the

mean of the observations and a model symbol to the right

of the vertical axis overestimates the variability of the obser-

vations. (See Hofmann et al. (2008) and Jolliff et al. (2009)

for a more detailed description of these diagrams.) On Tay-

lor diagrams, a model symbol lying on the horizontal axis

exactly correlates to the observations and a model symbol

further from the origin than the observation symbol overes-

timates the standard deviation of the observations. (See Tay-

lor (2001) for a more detailed description of these diagrams.)

Taylor and target diagrams presented here are normalized

to the standard deviation of the observations, allowing multi-

ple variables be represented on the same plot. This also con-

veniently allows the unit circle on a target diagram to repre-

sent the skill of a model defined as the mean of the obser-

vations. In effect, this means that if a model falls within the

unit circle, it exhibits a skill that is greater than the skill ob-

tained if one were to simply use the mean of the observations.

The Taylor and target plots are either temporal (displaying

model skill at a single station over the study period) or spa-

tial (displaying model skill during a single month over the en-

tire set of study stations). In addition, summary diagrams are

presented which combine both temporal (examining the sea-

sonal changes at each individual station) and spatial (exam-

ining differences across the bay during an individual month)

variability.

Model skill was assessed using the hourly model output

(daily for CH3D-ICM chlorophyll and nitrate) that was near-

est in time to that of the observation and from the grid cell

that encompassed the observation location. For months with

two observations, each observation was individually matched

to the model output and the skill statistics from those com-

parisons were averaged for that month. The native horizon-

tal resolution and bathymetry of the individual model grids

was preserved in the comparison so as not to bias the anal-

ysis through varying interpolation methodologies. For strat-

ification variables, the models and observations were inter-

polated to a 1 m vertical grid that extended only as deep as

the individual models’ bathymetry or deepest observation in

order to preserve the differences in bathymetric grids while

allowing for a direct comparison of the observations to the

models. Model–data comparisons at the bottom of the wa-

ter column were not necessarily based on the same depths,

since in many cases the modeled bathymetry was shallower

(or at times, deeper) than the deepest data point at a given sta-

tion. In order to avoid issues with extrapolation and/or grid

stretching, data at the bottom of the water column were al-

ways compared with model estimates from the deepest grid

cell provided by each particular model. Model–data compar-

isons for stratification and mixed layer depths only included

stations and times for which stratification was defined to exist

in both the observed and simulated fields.
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3 Results

An analysis of model skill of the combined temporal and

spatial variability of DO at the surface and bottom of the

water column, as well as at the observed MLDO, indicates

that all models, regardless of biogeochemical complexity or

spatial resolution, exhibit a high degree of skill in reproduc-

ing observed DO (Fig. 4). Specifically, all models produce

DO concentrations at the surface and bottom that have a nor-

malized total RMSD less than 1. The same is true for nearly

all models for DO at the observed MLDO. However, most

models underestimate observed DO both at the surface and

at the MLDO (Fig. 4a). The correlation between the observed

and modeled DO is relatively constant with depth (Fig. 4b),

though on average slightly higher at the bottom (0.85) than

at the surface (0.80). Further, on average, the models sim-

ulate DO at the surface and bottom better than they do at

the MLDO. No statistical difference exists between the skill

of models that utilize a full biogeochemical component and

those that utilize the simple constant-respiration oxygen pa-

rameterization. Based on an analysis of variance (ANOVA)

comparing the full biogeochemical models to the CRM mod-

els, the two model types do not perform differently in terms

of their ability to reproduce the combined temporal and spa-

tial variability of bottom DO as measured by total RMSD

(p = 0.48). Overall, Model M (the mean of the eight mod-

els) consistently performs better than any individual model

across all depths examined (Fig. 4).

The monthly temporal variability of bottom DO at each

station over the 2 years studied is resolved similarly well by

all of the models (Fig. 5a), but the models have difficulty sim-

ulating spatial DO variability during each month (Fig. 5b).

Due to the stations chosen for this analysis (Fig. 2), the spa-

tial variability being examined here is essentially the north

to south variability. Most models exhibit a latitudinal gra-

dient with respect to their skill in reproducing the temporal

variability of bottom DO, with models overestimating DO

at the more northern stations (Fig. 5a). Some models dif-

fer in their ability to reproduce summer (May–September)

DO concentrations and winter (October–April) DO concen-

trations (Fig. 5b). Models B, F, and G all distinctively over-

estimate mean DO in the summer compared to the winter.

In contrast, Models A and C perform similarly well in both

seasons (Fig. 5b). In addition, all three constant respiration

models, as well as Models D and E, substantially underesti-

mate DO at several stations in the winter.

All eight models generally resolve the pycnocline and oxy-

cline with similar skill (Fig. 6). All models consistently un-

derestimate the mean and standard deviation of the maximum

strength of stratification within the pycnocline and oxycline,

defined herein as the maximum vertical gradients of density

and oxygen (Fig. 6a). All models, except for Model A (see

Sect. 4.2), also underestimate the mixed layer depth, regard-

less of whether it is computed in terms of density or oxy-

gen. (Note that these model symbols in Fig. 6a are located

Figure 4. Normalized summary (a) target and (b) Taylor diagrams

illustrating model skill of dissolved oxygen at the surface, MLDO,

and bottom for 13 Chesapeake Bay stations in 2004–2005. The “x”

represents the skill of a model that perfectly reproduces the obser-

vations. The dotted, dashed-dot, and dashed lines on the Taylor dia-

gram represent lines of constant standard deviation, correlation co-

efficient, and unbiased RMSD, respectively.

above the y axis despite this negative bias in MLD because

the vertical coordinate system is oriented upwards.) Thus, the

models are producing stratification that is both weaker than

observed and higher (shallower) in the water column. The

correlation coefficient for these metrics is low, ranging 0.1–

0.6, and indicates that all models are missing the majority of

variability associated with the magnitude and location of the

pycnocline and oxycline (Fig. 6b). However, there is slightly

more consistency and better correlation coefficients among

the models for the strength of stratification than the depth of

the mixed layers.

All eight models are also characterized by similar skill in

representing the temporal and spatial variability of density

stratification and MLDρ (Fig. 7). There is a latitudinal differ-

ence in skill of the models in reproducing the magnitude of

www.biogeosciences.net/13/2011/2016/ Biogeosciences, 13, 2011–2028, 2016



2018 I. D. Irby et al.: Multiple modeling low-oxygen waters

Figure 5. Normalized target diagrams for Models A–H demonstrating the (a) temporal and (b) spatial skill in resolving the variability of

bottom dissolved oxygen concentrations. In (a) the individual dots represent the 13 stations along the main stem of the Chesapeake Bay.

In (b) the dots represent the 24 months of 2004–2005 and are delineated by color: red is summer (May–September) and blue is winter

(October–April).

the pycnocline and MLDρ , with model skill generally lower

at the northern stations (Fig. 7a). Contrary to the pattern

shown for bottom DO (Fig. 5b), none of the models exhibit

a significant seasonal pattern between summer and winter in

reproducing spatial variability of dρ/dz or MLDρ (Fig. 7b).

However, Model A differentiates itself from the rest of the

models in its pattern of skill at reproducing the spatial and

temporal variability of the MLDρ (see Sect. 4.2). Tempo-

ral and spatial patterns for oxycline stratification (dO/dz)

and MLDO closely match those of dρ/dz and MLDρ (not

shown).

All eight models reproduce the variability of bottom DO

better than the variables that are generally thought of as being

the primary drivers of hypoxic conditions, including stratifi-

cation (Fig. 6), salinity, chlorophyll, and nitrate (Fig. 8, Ta-

ble 3). However, all models reproduce patterns in tempera-

ture across the bay and through time better than any of the

other variables in this model comparison (Fig. 8). All eight

models, as well as the Model Mean, are characterized by

very low bias in modeled temperature, and correlation coeffi-

cients of approximately 0.99; this high skill results from the

very strong and predictable seasonal temperature variability.

Even though the five models with full biogeochemical com-

ponents (Models A, B, C, D, E) are characterized by large

differences in their mechanistic approaches to modeling ni-

trate and chlorophyll, they produce similar total RMSDs for

all of the variables examined at both the surface and the bot-

tom (Table 3).

The mean of the eight models (Model M) has a higher

model skill (lower RMSD) than any individual model across

nearly every variable examined (Table 3). In addition, for

nearly all observations at all stations, the 95 % confidence

interval of all model hindcasts encapsulates the observed

bottom DO concentration (Fig. 9), even though any individ-

ual model may overestimate or underestimate observed DO.

Models generally fall into greater agreement during the sum-

mer, when DO is low, and into lesser agreement in the winter

when DO is replete. While this study does not allow for a

true interannual comparison, it is interesting that at station

CB4.1C the model ensemble closely matches the timing of

the drawdown of DO in the spring of 2004 (Fig. 9), whereas

it produces a summer rather than spring initiation of hypoxic

conditions in 2005. In addition, the model ensemble produces
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Figure 6. Normalized summary (a) target and (b) Taylor diagram

illustrating model skill of MLDρ and MLDO, max dρ/dz, and max

dO/dz at 13 Chesapeake Bay stations for 2004–2005. The “x” rep-

resents the skill of a model that perfectly reproduces the observa-

tions. Since RMSD of stratification is only computed at stations

where both the observations and model exhibit stratification, the

Model Mean is not calculable for these variables.

a premature relaxing of hypoxic conditions for both years at

this observation station.

In order to better understand the impact of stratification

on DO concentrations throughout the water column, the re-

lationship between the observed pycnocline strength and

MLDρ were compared to the observed oxycline strength and

MLDO. Observations from 1998 to 2006 demonstrate that

while there is not a strong correlation between the strengths

of the pycnocline and oxycline, there is a very strong corre-

lation between MLDρ and MLDO (Fig. 10). Depending on

the criteria used for defining the existence of stratification

(see Sect. 2.3), the correlation of the pycnocline and oxy-

cline strengths range r2
= 0.18–0.26 and the correlations of

MLDρ and MLDO range r2
= 0.51–0.82 (Table 4). Further-

more, correlation of the relationship between the MLDρ and

MLDO is stronger for more severe stratification (Table 4).

The relationship between the two mixed layer depths is bi-

ased towards the MLDO being located slightly deeper in the

water column than the MLDρ . As the cut-off criteria for the

existence of stratification becomes more stringent, the rela-

tionship becomes closer to 1 : 1.

4 Discussion

4.1 How does the skill of various hydrodynamically

based DO models compare?

In examining the eight 3-D models in this study,

there is not a statistical difference between the abil-

ity of simple and complex models to simulate the

mean and monthly variability of bottom DO; in ad-

dition, models with higher spatial resolution do not

necessarily produce better estimates of DO.

Models currently simulating hypoxia throughout Chesa-

peake Bay compute oxygen concentrations in essentially two

distinct ways: they either utilize a simple constant respiration

model or a full biogeochemical model. In this study, the rel-

ative skill of both types of models is compared. Specifically,

in examining results of the comparison between five biogeo-

chemical models (A, B, C, D, E) and three simplistic constant

respiration models (F, G, H), the two groups of models per-

formed statistically similar in their skill of reproducing bot-

tom DO concentrations (Fig. 3, Table 3). These results sup-

port those of Bever et al. (2013) who compared three constant

respiration models with the CBP regulatory model (Model A)

and similarly found that all four of the models were equally

skillful in terms of reproducing the seasonal variability in

bottom DO throughout the bay in 2004 and 2005. Consis-

tent with the results of Scully (2013), this result implies that

the seasonal variability of DO in the Chesapeake Bay is pri-

marily dependent on underlying hydrodynamic mechanisms

which are nearly identical for all eight models, rather than

on aspects related to the biogeochemical cycling which vary

dramatically between models and in fact are constant in three

of the eight models. It should be noted, however, that the 2

years studied here were relatively wet years and an analysis

of dry years may offer different results.

Many previous studies have examined the costs and ben-

efits of adding complexity to biogeochemical models. For

example, increasing biogeochemical complexity has been

found to improve skill in some biogeochemical data assimila-

tive parameter optimization studies (Friedrichs et al., 2006,

2007; Lehmann et al., 2009; Bagniewski et al., 2011; Ward

et al., 2013; Xiao and Friedrichs, 2014). The additional pa-

rameters associated with increased complexity generally pro-

vide more parameters that are available for additional tun-

ing and subsequent improved model–data agreement. This

is in contrast to the results of this analysis demonstrating

that increased biogeochemical complexity does not neces-
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Figure 7. Normalized target diagrams for Models A–H demonstrating the (a) temporal and (b) spatial skill in resolving the variability of

the strength of density stratification (circles) and the depth of pycnocline initiation (diamonds). In (a) the individual dots represent the 13

stations along the main stem of the Chesapeake Bay. In (b) the dots represent the 24 months of 2004–2005 and are delineated by color: red

is summer (May–September) and blue is winter (October–April).

Table 3. Mean and standard deviation (SD) of observations and total normalized RMSD for each model. RMSD for each model except when

not applicable (N/A).

Mean±SD of Obs. Normalized RMSD

A B C D E F G H M

Surface temp. (◦C) 17.44± 8.82 0.13 0.13 0.12 0.09 0.13 0.13 0.16 0.19 0.10

Bottom temp. (◦C) 15.75± 8.02 0.24 0.35 0.35 0.23 0.22 0.35 0.17 0.19 0.23

Surface salinity (PSU) 10.92± 4.32 0.37 0.62 0.53 0.36 0.46 0.61 0.57 0.41 0.35

Bottom salinity (PSU) 18.17± 3.14 0.72 0.85 0.73 1.55 1.28 0.78 1.03 0.97 0.75

Max. dρ/dz (kgm−4) ∼ 1.64± 1.15 1.03 1.09 1.07 1.09 1.25 1.01 1.23 1.02 N/A

MLDρ (m) ∼ 5.32± 3.99 1.01 1.13 1.11 1.41 1.39 1.12 1.38 1.13 N/A

Surface DO (mgL−1) 9.74± 2.15 0.67 0.58 0.89 0.80 1.00 0.63 0.64 0.69 0.57

DO at MLDO (mgL−1) ∼ 8.44± 2.53 0.54 0.57 0.74 0.93 0.83 0.81 0.95 1.09 0.62

Bottom DO (mgL−1) 4.42± 3.61 0.51 0.59 0.81 0.61 0.54 0.46 0.61 0.60 0.46

Max. dDO/dz (mgL−1 m−1) ∼ 1.81± 1.12 1.19 1.21 1.34 1.09 1.35 1.12 1.23 1.19 N/A

MLDo (m) ∼ 6.62± 4.01 1.24 1.01 1.10 1.33 1.33 1.05 1.30 1.29 N/A

Surface Chl a (mgm−3) 11.19± 9.04 0.92 1.22 1.60 1.23 0.89 N/A N/A N/A 1.16

Bottom Chl a (mgm−3) 9.02± 11.52 0.87 1.10 1.07 1.05 1.01 N/A N/A N/A 0.90

Surface nitrate (mmolNm−3) 0.32± 0.33 0.61 0.79 1.03 0.61 0.52 N/A N/A N/A 0.79

Bottom nitrate (mmolNm−3) 0.12± 0.13 1.08 1.38 1.38 0.92 1.46 N/A N/A N/A 0.85
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Table 4. Pycnocline and oxycline correlation statistics (all correla-

tions have p values� 0.01).

Stratification Max. dρ/dz MLDρ Profiles

threshold vs. vs. with

percentage ( %) max. dO/dz MLDO stratification

10 0.18 0.51 1613

15 0.22 0.59 1303

20 0.22 0.70 916

25 0.26 0.82 575

sarily improve model–data agreement. In this case, the in-

crease in model complexity has likely outpaced the ability

of the researchers to fully tune the model to the available

observations. However, even past studies that have invoked

formal parameter optimization methodologies, such as ge-

netic algorithms and variational adjoint methods (Friedrichs

et al., 2007; Ward et al., 2010; Xiao and Friedrichs, 2014),

have found that under certain conditions, adding too much

complexity does not necessarily improve model skill and in

fact can decrease model skill and portability, primarily due

to artifacts resulting from overtuning. This mirrors findings

from the larger ecosystem modeling community where the

best-fit models are often those with intermediate complexity

(Fulton et al., 2003).

In this study, horizontal grid resolution differed signifi-

cantly between model implementations, with the most highly

resolved grid (Model G) including more than 9 times more

grid cells than the lower resolution grids (Table 1). A certain

degree of resolution is clearly required to successfully sim-

ulate dynamic processes, and a model with 8–10 km resolu-

tion will not be able to correctly simulate the hydrodynamic

processes within the bay (Feng et al., 2015). However, an in-

crease in horizontal grid resolution from ∼ 1.8 to ∼ 0.6 km,

which results in a run-time change of a factor of 9, or pos-

sibly of 27 if the time step is accordingly decreased by a

factor of 3, does not necessarily result in a significant im-

provement in simulation skill of either stratification or bot-

tom oxygen. Although not shown here, additional sensitivity

experiments with Model G revealed that doubling the verti-

cal resolution of this model had no significant effect on the

model’s ability to resolve the depth of stratification or the

maximum magnitude of stratification. Thus, when selecting

the optimal model resolution for a simulation, it is critical

to weigh the advantages of increased resolution with the in-

creased time required for simulation. With a given level of

computational resources, fewer sensitivity experiments can

be conducted with a model using a more highly resolved grid.

Accurately simulating the observed spatial variability of

DO (Fig. 4b) was a greater challenge than simulating the

temporal variability of DO (Fig. 4a) for all eight models par-

ticipating in this intercomparison. This is especially true in

the winter months when the vast majority of the bay is oxy-

Figure 8. Normalized summary (a) target and (b) Taylor diagram

illustrating model skill of bottom temperature, salinity, chlorophyll,

nitrate, and dissolved oxygen at 13 Chesapeake Bay stations for

2004–2005. The “x” represents the skill of a model that perfectly

reproduces the observations.

gen replete and the models have difficulty representing the

observed variability from station to station. The majority of

the models tend to slightly overestimate mean bottom DO in

the summer whereas multiple models (e.g., Models D, E, F,

and G) exhibit a strong negative bias during January and/or

February of 2005, primarily at stations in the middle to south-

ern portion of the bay’s deep channel. Interestingly, increased

biological complexity and higher grid resolution do not com-

pletely resolve this issue, as this is true for models utilizing

full biogeochemical models (Models D, E) as well as those

using highly resolved model grids (Model G). This is likely

due to the ephemeral nature of the biological divers of DO.

The strong performance of the constant respiration mod-

els implies that these models may be excellent candidates

for providing short-term bottom oxygen forecasts. The high

DO skill of the CRM models primarily results from the fact

that seasonal variations in physical processes (primarily wind
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Figure 9. Time series of bottom dissolved concentrations for station

CB4.1C. Red dots represent the 34 observations made during 2004–

2005. Grey lines are the individual model simulations. The dark

blue line represents the Model Mean while the cyan line represents

the 95 % confidence interval of the model simulations.

mixing and temperature) play a dominant role in controlling

the seasonal cycle of oxygen (Scully, 2013). Because the un-

derlying hydrodynamic models all use similar physical forc-

ing, the constant respiration models are able to simulate the

seasonal cycle of DO with similar skill as the more com-

plex biogeochemical models. As a result, these simple mod-

els that are easier to tune and require less in the way of com-

putational resources than full biogeochemical models, may

be efficiently used to produce short-term (on the order of

days) DO forecasts. On the contrary, the more complex full

biogeochemical models will be necessary for scenario-based

and long-term (on the order of months to years) forecasting

which requires that models respond to prescribed changes

in the biogeochemical environment, such as increased rates

of nutrient loading due to changes in land use, land cover,

and/or climate.

4.2 How does model skill of DO compare to that of the

primary drivers of DO variability?

Overall, model DO skill is greater than that of the

variables generally considered to drive DO vari-

ability, such as stratification, salinity, mixed layer

depth, chlorophyll, and nitrate; only modeled tem-

perature has higher skill than modeled DO.

Since dissolved oxygen concentrations in the Chesapeake

Bay are controlled by physical processes (e.g., advection,

wind mixing, heating/cooling, and stratification), as well as

biological processes (e.g., photosynthesis and respiration), it

is critical to understand the skill of the models in terms of

how well they reproduce the many factors influencing oxy-

gen concentrations. As expected, the five models containing

a specific biogeochemical model component had more diffi-

culty simulating the observed chlorophyll and nitrate concen-

Figure 10. Scatter plots comparing observations of (a) the strengths

of stratification of the pycnocline and oxycline and (b) the oxygen-

and density-defined mixed layer depths. Size of the circles is pro-

portional to the number of observations. Observations are from

1998 to 2006 at the 13 Chesapeake Bay stations shown in Fig. 2.

trations than the physical variables (temperature and salin-

ity), both at the surface (Table 3) and the bottom (Fig. 8).

Replicating the correct location, magnitude, and timing of

phytoplankton blooms and nutrient cycling is a complex is-

sue, and as a result, these features are generally not well

simulated in the models. While the models generally sim-

ulate the total amount of chlorophyll adequately, it is more

uniformly spatially distributed in the models rather than in

patchy blooms as in nature, leading to the underestimation of

chlorophyll variability across all models. Although all mod-

els produced a relatively high correlation between observed

and modeled temperature and salinity (Fig. 8), the correlation

coefficients for chlorophyll and nitrate were much lower. The

correlations for observed vs. modeled DO was more similar

to that of the physical variables (temperature, salinity) than

the biological variables (chlorophyll and nitrate), highlight-

ing that the seasonal variability in bottom DO is regulated
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more by physical than biological factors. This also explains

the success of the constant respiration models, which by def-

inition contain no biological variability yet reproduce DO

variability nearly as well as the most complex biogeochemi-

cal models.

In this study, model skill was also considerably higher for

bottom oxygen than it was for the vertical gradient of strat-

ification and mixed layer depths (Figs. 6, 8). The underes-

timation of the vertical gradient across all models is largely

due to the numerical diffusion that characterizes all of these

hydrodynamic models, but may also be partially due to an

underestimation of the winds or a lack of diffuse freshwa-

ter input around the bay. Even though the models all under-

estimated the strength of stratification (Figs. 4, 6), modeled

stratification in summer was strong enough to prevent mixing

with the relatively well-oxygenated surface waters. This re-

sult suggests, somewhat surprisingly, that simulating the cor-

rect vertical gradient of stratification is not absolutely neces-

sary for skillful bottom DO simulations. Models need only

simulate enough stratification to effectively cut off vertical

mixing in order to develop an isolated bottom layer that can

then experience a draw down in oxygen via respiration. In ad-

dition, the models must also correctly simulate the horizontal

advection of oxygen (Scully, 2013; Y. Li et al., 2015). The

fact that bottom DO is simulated so well by the eight models

analyzed here suggests that not only is the advection of oxy-

gen well represented in the models but also the strength of

stratification, i.e., the maximum vertical gradients of density

and oxygen, produced by these models is sufficient. Thus,

although novel and somewhat unexpected, these results are

not contradictory to previous studies demonstrating the im-

portance stratification plays in initiating summer hypoxia in

the Chesapeake Bay (Murphy et al., 2011).

Model skill in terms of reproducing observed mixed layer

depths was likewise much lower than model skill of repro-

ducing observed oxygen concentrations. All models, except

Model A, produced mixed layer depths (MLDO and MLDρ)

that were generally too shallow in the water column (Fig. 6a).

Note that Model A is a regulatory model that has been used

for many years by the Chesapeake Bay Program, and has thus

undergone more extensive calibration aimed at matching the

mean salinity and oxygen characteristics of the bay (Cerco

and Cole, 1993). Furthermore, Model A employs a z grid

that matches the bathymetry in trench areas better than the

sigma grids used by the other models. Although Model A

produced mixed layer depths that were generally in the cor-

rect location within the water column (Fig. 6a), they were too

variable (Fig. 6b). This variability may partly be a result of

the 1.5 m z grid employed by Model A causing large jumps

between vertical grid cells and hence resulting in overesti-

mates of MLD variability. All other models use sigma grids

typically with more highly resolved vertical resolution at the

depth of maximum stratification.

The two variables for which the models have greatest skill

are DO and temperature (Fig. 8). This is because oxygen

Figure 11. Time series of observations at station CB4.1C from 2003

to 2006 for (a) bottom dissolved oxygen, (b) dissolved oxygen at

the MLDO, and (c) MLDO.

variability is driven primarily by seasonal variability in phys-

ical processes such as solubility and wind mixing and to a

lesser degree by variability in oxygen consumption (Scully,

2013). As a result, the models using a constant mean respira-

tion rate produce as realistic hypoxia simulations as the bio-

geochemically complex models. Observations clearly show

this strong seasonal variability in bottom DO (Fig. 11a) and,

to a slightly lesser extent, clear seasonal variability in DO at

the bottom of the bottom of the oxygen mixed layer (MLDO;

Fig. 11b). However, a seasonal cycle is not manifested in the

MLDO itself (Fig. 11c). The lack of such a strong seasonal

cycle in the observed mixed layer depths makes this a more

difficult variable for the models to simulate. As a result, the

models can relatively skillfully simulate the combined spatial

and temporal variability of DO while simultaneously missing

the MLDO.

4.3 Why is it important for DO models to simulate the

MLDO correctly?

Most of the aerobic habitat in the bay during the

summer is located above the MLDO, thus it is crit-

ical for living resource managers to use models that

accurately simulate this variable.

On average, the models miss the observed depth of the

MLDO by 3.4 m, which equates to roughly a 60 % error

in the modeled mixed layer depths. While the models have

difficulty simulating the MLDO throughout the entire year

(Figs. 6, 7b), the summer months are when the mismatch

has the greatest potential to impact the available habitat for

oxygen-dependent species. Each year during this time period

low-oxygen waters occupy nearly the entire water column

below the mixed layer. At station CB4.1C, a representative

mesohaline deep trough station, the contours of low-oxygen

(5 mgL−1) and hypoxic (2 mgL−1) waters are located just

below the MLDO from late spring until late fall (Fig. 12).
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Figure 12. Time series of observations of dissolved oxygen and

MLDO contours at Station CB4.1C for 2004 and 2005.

The severe depletion of oxygen below the mixed layer com-

presses the habitable space at this station to roughly 10 m

(from a maximum of 32 m) during the annual low-oxygen

event.

The impact of habitat compression can be substantial, as

many bay species require DO concentrations well above the

traditional hypoxic threshold (USEPA, 2010). While not all

of the main stem stations develop hypoxic water each year,

most mesohaline stations experience a dramatic drawdown of

oxygen to levels during the summer that effectively remove

a large portion of the bay from habitable space (Murphy et

al., 2011; Schlenger et al., 2013). Studies have shown that

some species modify their behavior based on the oxycline

depth, which acts to constrict the habitable space in the wa-

ter column (Prince and Goodyear, 2006; Pierson et al., 2009;

Elliott et al., 2013). Since species can be negatively impacted

by low-DO concentrations as high as 5 mgL−1 (Breitburg,

2002; Vaquer-Sunyer and Duarte, 2008; USEPA, 2010), the

location of the oxycline is not only important for habitat com-

pression in the summer months but can also be important in

the winter months when an occasional lack of vertical mixing

can substantially decrease bottom DO concentrations. Fur-

thermore, in order to accurately estimate hypoxic volume,

models must correctly simulate the depth of the mixed layer,

since the MLDO closely follows the depth of the 2 mgL−1

contour.

4.4 How can DO simulations in the bay be improved

for management of water quality and living

resources?

To better simulate DO conditions and summer

habitat compression due to low-DO water, simu-

lations of the depth of the top of the pycnocline

(MLDρ) must be improved.

Although the suite of models examined reproduce DO

concentrations relatively well overall (Fig. 4), the models

typically overestimate summer habitat compression by pro-

ducing low DO concentrations too high in the water column

(Fig. 6). Observations from the Chesapeake Bay Program

show a strong correlation between the depths of the oxy-

gen and density-defined mixed layers (Fig. 10b). The mod-

els analyzed here also clearly exhibit a close relationship be-

tween their skill in simulating the depths of the oxygen and

density-defined mixed layers (Fig. 6). These strong relation-

ships between the depths of the oxygen and density-defined

mixed layers result from the fact that the pycnocline repre-

sents the physical barrier that leads to the development of

the oxycline. Therefore, the inability of the models to accu-

rately simulate habitat compression is an artifact of their lack

of skill in simulating the depth of the density-defined mixed

layer. In contrast, the strength of density stratification is not

well correlated to the strength of oxygen stratification. This

is because a relative wide range of intensities of density strat-

ification is still sufficient to cut off vertical mixing, leading

to the observed draw-down in bottom DO. Thus, even though

all models underestimate the strength of the pycnocline, they

still produce enough stratification to greatly reduce mixing.

The results from this paper thus indicate that to further im-

prove DO simulations and better estimate summertime habi-

tat compression, it is even more critical for models to accu-

rately simulate the depth of the top of the pycnocline than to

accurately simulate the absolute strength of the pycnocline.

4.5 What is the utility of the multi-model ensemble and

Model Mean?

The multi-model ensemble approach allows for the

development of a model mean, which taken as its

own model, is the most skilled model when exam-

ining the combined suite of variables analyzed in

this study.

The model skill assessment presented here demonstrates

that the average of all eight models, or five models in the case

of chlorophyll and nitrate, does better than any individual

model if looking across the suite of variables analyzed. This

finding is similar to that of other studies that examined the

value of the Model Mean from a multi-model ensemble (e.g.,

Gneiting and Raftery, 2005; Hagedorn et al., 2005). While

the concept of using a multi-model ensemble has been most

extensively employed by atmospheric, climatic, and global

circulation modelers, such as the Intergovernmental Panel on

Climate Change (e.g., Collins et al., 2013), the tool’s utility

for aquatic ecosystem modeling is gaining traction (Meier

et al., 2012; Trolle et al., 2014; Janssen et al., 2015). As

models are increasingly used in regulatory decisions regard-

ing aquatic ecosystems, a cohort of similarly skilled mod-

els can be used to help inform a set of confidence bounds

around an environmental forecast. Due to the restrictions
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placed on models used in regulatory actions, utilization of

a multi-model ensemble may not be realistic for all envi-

ronmental and resource managers; however, multiple mod-

els can be integrated into the decision-making process even

when the ultimate decision must be based on a single model.

For example, a confidence interval plot could help identify

where regulatory model output might be acting out of sync

with other skilled water quality models of the same system,

thereby informing managers of the potential shortfalls asso-

ciated with the regulatory model. Furthermore, if the models

tend to be predicting similar DO concentrations, a cohort of

models could enhance the confidence in regulatory decisions

based on a single regulatory model (Friedrichs et al., 2012;

Weller et al., 2013). Comparing multiple models can also

help inform how to better improve models in the future, as

this study has aimed to do.

5 Conclusions

All models analyzed here exhibited a high degree of skill in

simulating dissolved oxygen concentrations within the main

stem of the Chesapeake Bay in 2 years corresponding to rel-

atively wet and average years. Their high skill results from

the fact that physical processes (e.g., solubility, wind-mixing,

and advection) exert a first order influence on the seasonal

cycle of oxygen. As a result, the models’ ability to reproduce

dissolved oxygen concentrations is independent of the com-

plexity of the biogeochemical parameterizations: the sim-

plest constant respiration models were found to reproduce

observed oxygen concentrations as well as the most biologi-

cally complex models. Essentially, all models are equally ca-

pable of respiring most of the available oxygen in the lower

water column during summer.

This study also suggests that for use as management tools

for water quality and living resources, it is more critical for

these models to adequately resolve the depth of the mixed

layer than the absolute strength of stratification (as long as

modeled stratification is strong enough to limit vertical mix-

ing). This is critical because observations show that during

warmer months, oxygen-depleted water fills the water col-

umn to where stratification limits further mixing, which ef-

fectively cuts off waters below the mixed layer for use by the

majority of the Chesapeake Bay’s most recognized and val-

ued living resources. These results furthermore suggest that

modelers should focus their efforts on improving the hydro-

dynamics of their models in an effort to improve simulations

of mixed layer depth dynamics and variability.

These findings have significant ramifications for short-

term bottom DO forecasts, which may be successful with

very simple oxygen parameterizations embedded in hydrody-

namic models. In contrast, scenario-based water quality fore-

casts are likely to benefit from more complex models, which

must adequately reproduce the longer-term response of the

oxygen field to changes in nutrient and organic matter loads.

This study also helps to demonstrate how multiple commu-

nity models from governmental agencies and academic insti-

tutions may be used together to provide a model mean and

a set of confidence bounds for regulatory model results that

could be used to inform management decisions.

Data Availability

Observations used in this analysis can be downloaded from

the Chesapeake Bay Program’s Water Quality Database

website at (http://www.chesapeakebay.net/data/downloads/

cbpwaterqualitydatabase1984present). Model output for the

individual stations examined in this analysis can be ob-

tained by contacting Marjorie Friedrichs (marjy@vims.edu)

or downloaded from the Coastal & Ocean Modeling Testbed

– Estuarine Hypoxia THREDDS server (http://comt.sura.

org/thredds/catalog/comt2/cb_hypoxia/catalog.html).
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